Online Appendix

to

Frenemies in the Retail Market: A Partnership Between a Physical Retailer and an E-tailer for Consumer Returns

Mingrui (Ray) Zhang¹, Lin Hao², Yong Tan¹, Shi Chen¹

1. University of Washington

2. Fordham University

A. Proof of Lemma 1

We first derive their shopping choices by comparing U_s , U_F , and U_E . We find that $U_E > U_s$ when $h_0 < \hat{h}_{OES}^i = 2l - \phi$. For no-cross-return case, we further derive $\hat{h}_{OES}^N = 2l - h_r$. We consider that $l > h_r / 2$, such that showrooming will not dominate e-Direct. For cross-return case, we get $\hat{h}_{\text{OES}}^C = l$. We find $U_s > U_F$ when $h_o < \hat{h}_{OSF}^i = p_F - p_o$ for both cross- and no-cross-return cases.

Then we separate our analysis into two cases: (i) $\hat{h}^i_{OES} \leq \hat{h}^i_{OSF}$ and (ii) $\hat{h}^i_{OES} > \hat{h}^i_{OSF}$. For the case with $\hat{h}_{OES}^i \leq \hat{h}_{OSF}^i$, we get $p_O \leq \hat{p}_{O2}^i = p_F - 2l + \phi$, which indicates $\hat{p}_{O2}^N = p_F - 2l + h_r$ and $\hat{p}_{O2}^C = p_F - l$. Then, we find that (i) $U_E > \max\{U_S, U_F\}$ for $0 \le h_o < \hat{h}_{\text{OES}}^i$, and (ii) $U_S \ge \max\{U_E, U_F\}$ for $\hat{h}_{\text{OES}}^i \le h_o \le \hat{h}_{\text{OSF}}^i$. If we further have $\hat{h}_{OSF}^i \le 1$, i.e., $p_0 \ge \hat{p}_{OS}^i = p_F - 1$, we will have $U_F > \max\{U_S, U_E\}$ for $\hat{h}_{OSF}^i < h_0 \le 1$. To summarize, when \hat{p}_{03}^i < $p_0 \leq \hat{p}_{02}^i$, the consumers with $0 \leq h_0 < \hat{h}_{0ES}^i$ will choose e-Direct, the consumers with $\hat{h}_{\text{OES}}^i \leq h_0 \leq \hat{h}_{\text{OSF}}^i$ will choose showrooming, and the consumers with $\hat{h}_{\text{OSF}}^i < h_0 \leq 1$ will choose buy-offline. If $\hat{h}_{OSF}^i > 1$, i.e., $p_o < \hat{p}_{OS}^i$, none of the consumers will choose buy-offline. The consumers with $0 \le h_o < \hat{h}_{\text{OLS}}^i$ will choose e-Direct, and the consumers with $\hat{h}_{\text{OLS}}^i \le h_o \le 1$ will choose showrooming. We assume that $l < (1 + h_r)/2$ in order to have $\hat{p}_{03}^N < \hat{p}_{02}^N$, otherwise buy-offline and showrooming would not co-exist at any given p_o for no-cross-return case.

For the case with $\hat{h}^i_{OES} > \hat{h}^i_{OSF}$, which indicates $p_O > \hat{p}^i_{O2}$, there does not exist a region for $U_s \ge \max\{U_E, U_F\}$ as it requires $\hat{h}_{\text{OES}}^i \le h_o \le \hat{h}_{\text{OSF}}^i$. Hence, there is no showrooming consumer in this case. Instead, we find that $U_E > U_F$ when $h_O < \hat{h}_{OEF}^i = (p_F - p_O + 2l - \phi)/2$, which indicates

 $\hat{h}_{0EF}^N = (p_F - p_O + 2l - h_r)/2$ and $\hat{h}_{0EF}^C = (p_F - p_O + l)/2$. To make sure $\hat{h}_{0EF}^i > 0$, we need $p_0 < \hat{p}_{01}^i = p_F + 2l - \phi$, more specifically, $\hat{p}_{01}^N = p_F + 2l - h_r$ and $\hat{p}_{01}^C = p_F + l$. It's trivial to show $\hat{p}_{01}^C > \hat{p}_{02}^C$. We can further verify that $\hat{p}_{01}^N > \hat{p}_{02}^N$ based on the assumption $h_r/2 < l < (1 + h_r)/2$. In addition, we find that $0 < \hat{h}_{OFF}^i < 1$ when $\hat{p}_{02}^i < p_0 \leq \hat{p}_{01}^i$. Hence, when $\hat{p}_{02}^i < p_0 \leq \hat{p}_{01}^i$, the consumers with $0 \le h_o \le \hat{h}_{oEF}^i$ will choose e-Direct, and the consumers with $\hat{h}_{oEF}^i < h_o \le 1$ will choose buy-offline. When $p_o > \hat{p}_{o1}^i$, we have $\hat{h}_{oEF}^i \leq 0$. In such a case, the consumers with $0 \leq h_o \leq 1$ will choose buy-offline.

B. Proof of Lemma 2

We first set up the consumer demand a , based on consumer segmentation from Lemma 1. For simplicity, we introduce the following notation: we use case A to denote Seg F (segment F) from Lemma 1, case B for Seg E-F, case C for Seg E-S-F, and case D for Seg E-S.

- Case A: When $p_o > \hat{p}_{o1}^i$, $a_{EA}^i = 0$, $a_{SA}^i = 0$, $a_{FA}^i = 1/2$;
- Case B: When $\hat{p}_{02}^i < p_0 \leq \hat{p}_{01}^i$, $a_{EB}^i = \hat{h}_{OFF}^i / 2$, $a_{SB}^i = 0$, $a_{FB}^i = \left(1 \hat{h}_{OFF}^i\right) / 2$;
- Case C: When $\hat{p}_{03}^i < p_0 \leq \hat{p}_{02}^i$, $a_{EC}^i = \hat{h}_{OES}^i/2$, $a_{SC}^i = (\hat{h}_{OSF}^i \hat{h}_{OES}^i)/2$, $a_{FC}^i = (1 \hat{h}_{OSF}^i)/2$;
- Case D: When $p_o \leq \hat{p}_{o3}^i$, $a_{ED}^i = \hat{h}_{OES}^i / 2$, $a_{SD}^i = \left(1 \hat{h}_{OES}^i\right) / 2$, $a_{FD}^i = 0$.

Now let's derive offline retailer's best response functions under each case.

• Case A: When $p_o > \hat{p}_{o1}^c$, we get $p_f < p_o - l$, the total profit function is $\pi_{FA} = (p_F) \cdot a_{FA}^C + (f - s_F) \cdot a_{FA}^C = p_F / 2$. We derive positive derivative $\frac{d\pi_{FA}}{d\pi_{FA}} = \frac{1}{2}$ 2 $d\,\pi_{_{FA}}$ *F dp* $\frac{\pi_{FA}}{\pi} = \frac{1}{2}$, so the best

response price for physical retailer is $p_F^* = \hat{p}_{FS}^C = p_O - l$. Thus, the total profit for offline retailer in this case is $\pi_{FA}^* = \frac{P_O}{2}$ $E_{FA}^* = \frac{PQ}{Q}$ $\pi_{FA}^* = \frac{p_o - l}{2}$;

• Case B: When $\hat{p}_{02}^C < p_0 \leq \hat{p}_{01}^C$, we get $p_0 - l \leq p_F < p_0 + l$, the total profit function is $(p_F) \cdot a_{FB}^C + (f - s_F) \cdot a_{EB}^C = p_F \left(\frac{1}{2} - \frac{l}{4} - \frac{p_F}{4} + \frac{p_O}{4} \right) + (f - s_F) \left(\frac{l}{4} + \frac{p_F}{4} - \frac{p_O}{4} \right)$ 2 4 4 4 $\binom{6}{1}$ $\binom{8}{4}$ 4 4 4 $E_{FB} = (p_F) \cdot a_{FB}^C + (f - s_F) \cdot a_{EB}^C = p_F \left[\frac{1}{2} - \frac{V}{4} - \frac{V}{4} + \frac{V \cdot C}{4} \right] + (f - s_F) \left[\frac{V}{4} + \frac{V \cdot F}{4} \right]$ $\pi_{FB} = (p_F) \cdot a_{FB}^C + (f - s_F) \cdot a_{EB}^C = p_F \left(\frac{1}{2} - \frac{l}{4} - \frac{p_F}{4} + \frac{p_O}{4} \right) + (f - s_F) \left(\frac{l}{4} + \frac{p_F}{4} - \frac{p_O}{4} \right)$ $= (p_F) \cdot a_{FB}^c + (f - s_F) \cdot a_{EB}^c = p_F \left(\frac{1}{2} - \frac{1}{4} - \frac{3}{4} + \frac{1}{4} + \frac$. We

solve the derivative $\frac{a n_{FB}}{1} = 0$ *F d dp* $\frac{\pi_{FB}}{L} = 0$ and get $p_F^* = \hat{p}_{F4}^C = (p_O + f - s_F - l + 2)/2$ and

$$
\pi_{FB}^* = -\frac{1}{4}l + \frac{1}{4}p_0 + \frac{1}{4} + \frac{1}{16}f^2 - \frac{1}{8}fs_F + \frac{1}{16}s_F^2 - \frac{1}{8}p_0l + \frac{1}{16}p_0^2 + \frac{1}{16}l^2 + \frac{1}{8}lf + \frac{1}{4}f - \frac{1}{8}p_0f - \frac{1}{8}ls_F
$$

$$
-\frac{1}{4}s_F + \frac{1}{8}p_0s_F.
$$

Then we evaluate at the upper limit of p_F , $p_O + l - \hat{p}_{F4}^C = \frac{3l}{2} + \frac{p_O}{2}$ $\hat{p}_{rel}^C = \frac{3l}{2} + \frac{p_0}{2} - 1$ 2 2 2 2 $\hat{p}_F^C = \frac{\hat{p}_F^C}{2} + \frac{p_0}{2} - 1 - \frac{J}{2} + \frac{S_F}{2}$ $p_o + l - \hat{p}_{F4}^C = \frac{3l}{2} + \frac{p_o}{2} - 1 - \frac{f}{2} + \frac{s_F}{2}$. To make $p_0 + l - \hat{p}_{F4}^C \ge 0$, we get $p_0 \le \hat{p}_{013}^C = f - s_F - 3l + 2$. Then we evaluate at the lower limit of p_{F} , $\hat{p}_{F4}^{C} - p_{O} + l = 1 + \frac{\epsilon}{2} - \frac{p_{O}}{2}$ 2 2 2 2 $\frac{C}{F^4} - p_o + l = 1 + \frac{l}{2} - \frac{p_o}{2} + \frac{J}{2} - \frac{3F}{2}$ $\hat{p}_{F4}^C - p_o + l = 1 + \frac{l}{2} - \frac{p_o}{r} + \frac{f}{r} - \frac{s_F}{r}$. To make $\hat{p}_{F4}^C - p_o + l \ge 0$, we get $p_0 \le \hat{p}_{014}^C = f - s_F + l + 2$. Note here, $\hat{p}_{014}^C - \hat{p}_{013}^C = 4l$ is positive. When $p_0 < \hat{p}_{013}^C$, solve the Lagrangian $\pi_{LIFB} = p_F \left(\frac{1}{2} - \frac{\nu}{4} - \frac{p_F}{4} + \frac{p_O}{4} \right) + (f - s_F) \left(\frac{\nu}{4} + \frac{p_F}{4} - \frac{p_O}{4} \right) + \lambda (l + p_O - p_F)$ 1 2 4 4 4 $\binom{6}{1}$ $\binom{8}{4}$ 4 4 4 $F_{LIFB} = p_F \left[\frac{1}{2} - \frac{F}{A} - \frac{PF}{A} + \frac{FO}{A} \right] + (f - s_F) \left[\frac{F}{A} + \frac{PF}{A} - \frac{FO}{A} \right] + \lambda (l + p_O - p_F)$ $\pi_{L1FR} = p_F \left(\frac{1}{2} - \frac{l}{f} - \frac{p_F}{f} + \frac{p_O}{f} \right) + (f - s_F) \left(\frac{l}{f} + \frac{p_F}{f} - \frac{p_O}{f} \right) + \lambda (l + p_O - p$ $= p_F \left(\frac{1}{2} - \frac{l}{4} - \frac{p_F}{4} + \frac{p_O}{4} \right) + \left(f - s_F \right) \left(\frac{l}{4} + \frac{p_F}{4} - \frac{p_O}{4} \right) + \lambda \left(l + p_O - \frac{p_O}{4} \right)$, we get the boundary solution $\hat{p}_{F3}^{C} = p_{\text{o}}$ $p_F^* = \hat{p}_{F3}^C = p_0 + l$ and 2 $1FB$ \sim \sim \sim $1/2$ \sim PQ \sim PQ $\pi_{\text{LIFB}}^{*} = \frac{1}{2}l - \frac{1}{2}l^{2} + \frac{1}{2}p_{0} - \frac{1}{2}p_{0}l + \frac{1}{2}lf - \frac{1}{2}ls_{F}$. When $p_{0} > \hat{p}_{014}^{C}$, solve the Lagrangian $P_{2FB} = p_F \left(\frac{1}{2} - \frac{l}{4} - \frac{p_F}{4} + \frac{p_O}{4} \right) + (f - s_F) \left(\frac{l}{4} + \frac{p_F}{4} - \frac{p_O}{4} \right) + \lambda (p_F - p_O + l)$ 2 4 4 4 $\binom{6}{1}$ $\binom{8}{4}$ 4 4 4 $F_{L2FB} = p_F \left[\frac{1}{2} - \frac{V}{4} - \frac{PF}{4} + \frac{PO}{4} \right] + (f - s_F) \left[\frac{V}{4} + \frac{PF}{4} - \frac{PO}{4} \right] + \lambda (p_F)$ $\pi_{I2FR} = p_F \left(\frac{1}{2} - \frac{l}{f} - \frac{p_F}{f} + \frac{p_O}{f} \right) + (f - s_F) \left(\frac{l}{f} + \frac{p_F}{f} - \frac{p_O}{f} \right) + \lambda (p_F - p_O + l)$ $\begin{pmatrix} 1 & l & p_F & p_O \end{pmatrix}$ $= p_F \left(\frac{1}{2} - \frac{1}{4} - \frac{P}{4} + \frac{P}{4} - \frac{P}{4} \right) + (f - s_F) \left(\frac{1}{4} + \frac{P}{4} - \frac{P}{4} - \frac{P}{4} \right) + \lambda (p_F - p_o + l)$, we get the boundary solution $p_F^* = \hat{p}_{FS}^C = p_O - l$ and $\pi_{L2FB}^* = \frac{p_O}{2}$ $\frac{P}{L^2EB} = \frac{PQ}{B}$ $\pi^*_{L2FB} = \frac{p_o - l}{2}$;

• Case C: When $\hat{p}_{03}^C < p_0 \leq \hat{p}_{02}^C$, we get $p_0 + l \leq p_F < p_0 + 1$, the total profit function is 1 p_{F} , p_{o}) $(f - s_{F})$ 2 2 2 2 $F_F = P_F \left[\frac{1}{2} - \frac{P_F}{2} + \frac{P_O}{2} \right] + \frac{(J - F_F)}{2}$ $\pi_{FC} = p_F \left(\frac{1}{2} - \frac{p_F}{F} + \frac{p_O}{F} \right) + \frac{(f - s_F)l}{F}$ $(1-p_F - p₀) (f = p_F \left(\frac{1}{2} - \frac{p_F}{2} + \frac{p_O}{2} \right) + \frac{(p_F - p_F)}{2}$. We derive negative second order derivative 2 $\frac{FC}{2} = -1$ *F d dp* $\frac{\pi_{FC}}{L^2} = -1$, so we get $p_F = \hat{p}_{F2}^C = (p_O + 1)/2$ such that $\frac{d\pi_{FC}}{L} = 0$ *F d dp* $\frac{\pi_{FC}}{1}$ = 0. The total profit in this case is $\pi_{FC}^* = \frac{1}{2} + \frac{1}{2} p_0 + \frac{1}{2} p_0^2$ $0 \rightarrow \alpha PQ$ $\pi_{FC}^* = \frac{1}{8} + \frac{1}{4} p_0 + \frac{1}{8} p_0^2 + \frac{1}{2} l f - \frac{1}{2} l s_F$. To reach this optimal price and profit, we need to have $p_0 + l \le \hat{p}_{F_2}^C < p_0 + 1$. For the upper limit, $p_0 + 1 - \hat{p}_{F_2}^C = (p_0 + 1)/2 > 0$ when

 $p_0 > \hat{p}_{011}^c = -1$. For the lower limit $\hat{p}_{F2}^c - p_0 - l = \frac{1}{2} - \frac{p_0}{2} - l > 0$ 2 2 $\hat{p}_{F2}^C - p_o - l = \frac{1}{2} - \frac{p_o}{2} - l > 0$ when $p_o < \hat{p}_{O12}^C = 1 - 2l$. Notice that $\hat{p}_{012}^C - \hat{p}_{011}^C = 2(1-l) > 0$, so we have $\hat{p}_{011}^C < p_0 < \hat{p}_{012}^C$. Next we derive the boundary solution $p_o < \hat{p}_{o11}^c$. We solve the Lagrangian

 $(f - s_F)$ $\mu_{1FC} = p_F \left(\frac{1}{2} - \frac{p_F}{2} + \frac{p_O}{2} \right) + \frac{(J - \mu_F)^2}{2} + \lambda \left(1 + p_O - p_F \right)$ $\frac{1}{1} - \frac{p_F}{1} + \frac{p_O}{1} + \frac{(f - s_F)l}{1} + \lambda(1)$ 2 2 2 2 $F_{LHC} = p_F \left[\frac{1}{2} - \frac{p_F}{2} + \frac{p_O}{2} \right] + \frac{(J - \frac{p_F}{2})^2}{2} + \lambda (1 + p_O - p_F)$ $\pi_{LFC} = p_F \left(\frac{1}{2} - \frac{p_F}{r} + \frac{p_O}{r} \right) + \frac{(f - s_F)l}{r} + \lambda (1 + p_O - p$ $(1-p_F-p_0)$ $(f = p_F \left(\frac{1}{2} - \frac{p_F}{2} + \frac{p_O}{2} \right) + \frac{(3 - p_F)}{2} + \lambda \left(1 + p_O - p_F \right)$, and get the boundary solution

$$
p_F^* = \hat{p}_{F1}^C = p_0 + 1
$$
 and $\pi_{L1FC}^* = \frac{(f - s_F)l}{2}$. Then when $p_O > \hat{p}_{O12}^C$, we solve the Lagrangian

 $(f - s_F)$ $\sum_{2FC} = p_F \left(\frac{1}{2} - \frac{p_F}{2} + \frac{p_O}{2} \right) + \frac{(J - p_F)t}{2} + \lambda (p_F - p_O - l)$ 1 2 2 2 2 $F_{L2FC} = p_F \left(\frac{1}{2} - \frac{p_F}{2} + \frac{p_O}{2} \right) + \frac{(J - p_F)^2}{2} + \lambda (p_F)^2$ $\pi_{L2FC} = p_F \left(\frac{1}{2} - \frac{p_F}{r} + \frac{p_O}{r} \right) + \frac{(f - s_F)l}{r} + \lambda (p_F - p_O - l)$ $(1-p_F - p_o) (f = p_F \left(\frac{1}{2} - \frac{p_F}{2} + \frac{p_O}{2} \right) + \frac{(3 - p_F)^2}{2} + \lambda (p_F - p_O - l)$, and get the boundary solution

$$
p_F^* = \hat{p}_{F3}^C = p_0 + l \text{ and } \pi_{L2FC}^* = \frac{1}{2}l - \frac{1}{2}l^2 + \frac{1}{2}p_0 - \frac{1}{2}p_0l + \frac{1}{2}lf - \frac{1}{2}ls_F;
$$

• Case D: When $p_o \le \hat{p}_{o3}^C$, we get $p_F > p_o + 1$, the total profit function is $\pi_{FD} = (p_F) \cdot a_{FD}^C = 0$. Hence, we have no best response function for this case.

Next, we summarize the offline retailer's overall best response function by consolidating their best response from above.

- Case A: $p_F^* = \hat{p}_{FS}^C = p_0$ $p_F^* = \hat{p}_{FS}^C = p_O - l$ and the corresponding total profit is π_{FA}^* ;
- Case B: When $p_0 < \hat{p}_{013}^c$, the boundary solution is $p_F^* = \hat{p}_{F3}^c = p_0 + l$ and the corresponding total profit is π_{L1FB}^* .

When $\hat{p}_{013}^C < p_0 < \hat{p}_{014}^C$, the interior solution is $p_F^* = \hat{p}_{F4}^C = (p_0 + f - s_F - l + 2)/2$ and the corresponding total profit is π^*_{FB} .

When $p_0 > \hat{p}_{014}^c$, the boundary solution is $p_F^* = \hat{p}_{FS}^c = p_0 - l$ and the corresponding total profit is $\pi_{\scriptscriptstyle L2FB}^*$;

• Case C: When $p_0 < \hat{p}_{01}^c$, the boundary solution is $p_F^* = \hat{p}_{F1}^c = p_0 + 1$ and the corresponding total profit is π^*_{L1FC} .

When $\hat{p}_{01}^c < p_o < \hat{p}_{012}^c$, the interior solution is $p_F^* = \hat{p}_{F2}^c = (p_o + 1)/2$ $p_F^* = \hat{p}_{F2}^C = (p_o + 1)/2$ and the corresponding total profit is π_{FC}^* .

When $p_o > \hat{p}_{o12}^c$, the boundary solution is $p_F^* = \hat{p}_{F3}^c = p_o + l$ and the corresponding total profit is $\pi_{\scriptscriptstyle{L2FC}}^*$.

From the summary, we find $\pi_{FA}^* = \pi_{L2FB}^*$, so π_A^* is dominated. We also notice that $\pi_{L1FB}^* = \pi_{L2FC}^*$. Hence, we compare the two boundaries \hat{p}_{013}^C and \hat{p}_{012}^C , and we get $\hat{p}_{013}^C - \hat{p}_{012}^C = -l + 1 + f - s_F$. We derive $\hat{p}_{013}^C > \hat{p}_{012}^C$ when $f > s_F + l - 1$. Therefore, we have:

• Case F1: $f > f_{F1}$ $f > \hat{f}_{F1} = s_F + l - 1$

> When $p_o < \hat{p}_{o1}^c$, $p_F^* = \hat{p}_{F1}^c$ and the total profit is π_{LHC}^* . When $\hat{p}_{011}^C < p_0 < \hat{p}_{012}^C$, $p_F^* = \hat{p}_{F2}^C$ and the total profit is π_{FC}^* . When $\hat{p}_{012}^C < p_0 < \hat{p}_{013}^C$, $p_F^* = \hat{p}_{F3}^C$ and the total profit is π_{LIFB}^* . When $\hat{p}_{013}^C < p_0 < \hat{p}_{014}^C$, $p_F^* = \hat{p}_{F4}^C$ and the total profit is π_{FB}^* . When $p_o > \hat{p}_{o14}^c$, $p_F^* = \hat{p}_{F5}^c$ and the total profit is π_{L2FB}^* ;

When $f < s_F + l - 1$, i.e., $\hat{p}_{0.3}^C < \hat{p}_{0.2}^C$, we need to compare π_{FB}^* and π_{FC}^* . Hence, we get 2 2 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $O \cap O' = O \cap F$ or $O \cap F$ of $O \cap F$ or $O \cap C$ or $O \cap C$ or $O \cap F$ $\pi_{FC}^* - \pi_{FB}^* = -\frac{1}{8} + \frac{1}{16}p_{O}^2 + \frac{3}{8}lf - \frac{3}{8}ls_F + \frac{1}{4}l - \frac{1}{16}f^2 + \frac{1}{8}fs_F - \frac{1}{16}s_F^2 + \frac{1}{8}p_{O}l - \frac{1}{16}l^2 - \frac{1}{4}f + \frac{1}{8}p_{O}f + \frac{1}{4}s_F - \frac{1}{8}p_{O}s_F$ We derive positive second order derivative $\frac{d^2 (\pi_{FC}^* - \pi_{FB}^*)}{d^2}$ 2 1 8 $d^{\text{\tiny\it I}}\,|\,\pi^*_{\scriptscriptstyle{FC}}\,{-}\,\pi^*_{\scriptscriptstyle{FB}}$ *O dp* $\pi_{\scriptscriptstyle r\sigma}^*-\pi_{\scriptscriptstyle r}^*$ = $\frac{(-\lambda_{FB})}{2} = \frac{1}{2}$. Then we evaluate $\pi_{FG}^* - \pi_{FB}^*$ when

$$
p_o = \hat{p}_{o12}^c
$$
, and we get $\pi_{FC}^* - \pi_{FB}^* = -\frac{(-l+1+f-s_F)^2}{16} < 0$. We evaluate $\pi_{FC}^* - \pi_{FB}^*$ when $p_o = \hat{p}_{o13}^c$,

and we get $\pi_{FC}^* - \pi_{FB}^* = \frac{(-l+1+f-s_F)^2}{2}$ 0 $C \sim F B$ 8 *F F FB* $\pi_{FC}^* - \pi_{FB}^* = \frac{(-l+1+f-s_F)^2}{8} > 0$. After solving $\pi_{FC}^* - \pi_{FB}^* = 0$, we get two roots $p_{_{OA}} = -\sqrt{2f} + \sqrt{2l} + \sqrt{2s_F} - \sqrt{2 - f} - l + s_F$ and $p_{_{OB}} = \sqrt{2f} - \sqrt{2l} - \sqrt{2s_F} + \sqrt{2 - f} - l + s_F$. Then to compare p_{OA} and p_{OB} , we take the difference $p_{OA} - p_{OB} = -2\sqrt{2(-l + 1 + f - s_F)}$. When $f = s_F + l - 1$, we have $p_{OA} - p_{OB} = 0$. Since $\frac{d(p_{OA} - p_{OB})}{dt} = -2\sqrt{2} < 0$ *df* $\frac{p_{OA} - p_{OB}}{p_{OB}}} = \frac{F(\textit{P}_{OB})}{f} = -2\sqrt{2} < 0$ and $f < s_F + l - 1$, we have $p_{OA} - p_{OB} > 0$. Therefore, the smaller root p_{OB} is inside the range and we get $\hat{p}_{O22}^{C} = \sqrt{2}f - \sqrt{2}l - \sqrt{2}s_{F} + \sqrt{2}-f-l+s_{F}$ *C* $\hat{p}_{022}^C = \sqrt{2}f - \sqrt{2}l - \sqrt{2}s_F + \sqrt{2} - f - l + s_F$. Since $\frac{d\hat{p}_{022}^C}{dr} = \sqrt{2} - 1 > 0$ $d\hat{p}^{\mathsf{c}}_{o}$ $\frac{\rho_{O22}}{df} = \sqrt{2 - 1} > 0$, \hat{p}_{O22}^C \hat{p}^c_{022} decrease as *f* decreases. Next, we will compare \hat{p}^C_{022} \hat{p}^{C}_{O22} with \hat{p}^{C}_{O11} \hat{p}_{011}^C and \hat{p}_{014}^C \hat{p}_{014}^C . First, we get $\frac{d\hat{p}_{011}^C}{dr} = 0$ $d\hat{p}^{\scriptscriptstyle C}_{\scriptscriptstyle O}$ $= 0$ and $\frac{d\hat{p}_{014}^C}{dt} = 1$ $d\hat{p}^{\mathsf{c}}_{o}$ $\frac{dV}{dt} = 1.$

df Given $\frac{d\hat{p}_{014}^C}{dt} > \frac{d\hat{p}_{022}^C}{dt} > \frac{d\hat{p}_{011}^C}{dt}$ *f* $\hat{p}_{014}^C \,$ *d* $\hat{p}_{022}^C \,$ *d* \hat{p} $\frac{d^2y}{dt^2} > \frac{1}{\frac{dy}{dt}} > \frac{1}{d}$ $> \frac{d\hat{p}_{022}^{c}}{dr} > \frac{d\hat{p}_{011}^{c}}{dr}$, \hat{p}_{022}^{c} \hat{p}^{C}_{O22} have a chance to intersect with \hat{p}^{C}_{O11} \hat{p}_{011}^C and \hat{p}_{014}^C \hat{p}_{014}^C . Second, let $\hat{p}_{022}^C = \hat{p}_{011}^C$, so we have $f_{11} = 3l + s_F - 3 + 2\sqrt{2l - 2\sqrt{2}}$. Let $\hat{p}_{022}^C = \hat{p}_{014}^C$, so we have 14 $-JF2$ $f_{14} = \hat{f}_{F2} = s_F - (3 + 2\sqrt{2})l - 1$. Then, we compare f_{11} and f_{14} , we get

$$
f_{14} - f_{11} = 2(3 + 2\sqrt{2})(-1 - 1 + \sqrt{2})
$$
. Note that $f_{14} - f_{11} > 0$ when $0 < l < \frac{1}{3}$. Hence, when f

decreases, \hat{p}^C_{O22} \hat{p}_{022}^C will reach $\hat{p}_{023}^C = \hat{p}_{014}^C$ first. Therefore, to summarize, we have:

• Case F2: $f_{F_2} < f < f_{F_1}$ $\hat{f}_{F2} < f < \hat{f}_{F}$ When $p_o \le \hat{p}_{o21}^c = \hat{p}_{o11}^c$, $p_F^* = \hat{p}_{F1}^c$ and the total profit is π_{LHC}^* . When $\hat{p}_{021}^C < p_0 \leq \hat{p}_{022}^C$, $p_F^* = \hat{p}_{F2}^C$ and the total profit is π_{FC}^* . When $\hat{p}_{022}^C < p_0 \leq \hat{p}_{023}^C$, $p_F^* = \hat{p}_{F4}^C$ and the total profit is π_{F}^* . When $p_o > \hat{p}_{o23}^c$, $p_F^* = \hat{p}_{FS}^c$ and the total profit is π_{L2FB}^* ; When $f < f_{F2}$ $f < \hat{f}_{F2}$, we have $\hat{p}_{O22}^C > \hat{p}_{O23}^C$, so we need to compare π_{FC}^* and π_{L2FB}^* . We derive 2 2 $0 \rightarrow \alpha P0$ $\pi_{FC}^* - \pi_{L2FB}^* = \frac{1}{8} - \frac{1}{4} p_0 + \frac{1}{8} p_0^2 + \frac{1}{2} tf - \frac{1}{2} ls_F + \frac{1}{2} t$ the second order derivative $^{2}\left(\pi_{FC}^{*}-\pi_{L2FB}^{*}\right)$ 2 $_{2FB}$ | 1 4 *FC L* 2*FB O d dp* $\frac{\pi_{FC}^* - \pi_{L2FB}^*}{\pi_{LC}^2} = \frac{1}{4}$ is positive. We first evaluate $\pi_{FC}^* - \pi_{L2FB}^*$ when $p_o = \hat{p}_{o11}^c$, and get 2 $\pi_{FC}^* - \pi_{L2FB}^* = \frac{1}{2} + \frac{1}{2} \, l f - \frac{1}{2} \, l s_F + \frac{1}{2} \, l$. Then we get $\frac{d(\pi_{FC}^* - \pi_{L2FB}^*)}{dt}$ 0 2 $d\left(\pi_{\scriptscriptstyle{FC}}^{*}-\pi_{\scriptscriptstyle{L2FB}}^{*}\right)-l$ *df* $\pi_{FC}^* - \pi_{L2F}^*$ $\frac{(-\pi_{L2FB}^*)}{\frac{1}{2}} = \frac{l}{2} > 0.$. When $f = f_{F2}$ $f = \hat{f}_{F2}$, we have $\frac{2FB}{2FB} = \frac{(2\sqrt{2}+3)(-l-1+\sqrt{2})(l-1+\sqrt{2})}{2} > 0$ $FC \sim L2FB$ – 2 $\pi_{EC}^* - \pi_{L2ER}^* = \frac{(2\sqrt{2}+3)(-l-1+\sqrt{2})(l-1+\sqrt{2})}{2} > 0$, assuming $0 < l < \frac{1}{2}$ $\langle l \times \frac{1}{3}$. Let $\pi_{FC}^* - \pi_{L2FB}^* = 0$, we have $f = f_{F3}$ $f = \hat{f}_{F3} = s_F - 1 - \frac{1}{l}$. Hence when $\hat{f}_{F3} < f < \hat{f}_{F2}$ $\hat{f}_{F3} < f < \hat{f}_{F2}$, we have $\frac{1}{2} + \frac{1}{2} \cdot 4f - \frac{1}{2} \cdot 4f - \frac{1}{2} \cdot 4f = 0$ $\frac{1}{2} + \frac{1}{2}lf - \frac{1}{2}ls_F + \frac{1}{2}l > 0$. Then we evaluate $\frac{d\left(\pi_{FC}^* - \pi_{L2FB}^*\right)}{d\left(\pi_{FC}^* - \pi_{L2FB}^*\right)} = \frac{p_o}{d} - \frac{1}{d}$ 4 4 $d\left(\pi_{\scriptscriptstyle{FC}}^{*}-\pi_{\scriptscriptstyle{L2FB}}^{*}\right) = p_o$ *O dp* $\pi_{\scriptscriptstyle r\sigma}^*-\pi_{\scriptscriptstyle r}^*$ =—– $\left(\frac{-\pi_{L2FB}^*}{T}\right) = \frac{p_o}{T} - \frac{1}{T}$ when $p_o = \hat{p}_{o11}^c$, and get $\frac{d\left(\pi_{FC}^* - \pi_{L2FB}^*\right)}{T} = -\frac{1}{2} < 0$ 2 $d\left(\pi_{FC}^{*}-\pi_{L2FB}^{*}\right)$ *O dp* $\frac{\pi_{FC}^* - \pi_{L2FB}^*}{\pi_{LC}} = -\frac{1}{2} < 0$. Next, we derive the upper boundary of p_o by solving $\pi_{FC}^* - \pi_{L2FB}^* = 0$. We get two roots $p_{OA} = 1 + 2\sqrt{-l(f - s_F + 1)}$ and $p_{OB} = 1 - 2\sqrt{-l(f - s_F + 1)}$. Then we compare p_{OA} and p_{OB} , and get $p_{OA} - p_{OB} = 4\sqrt{-l(f - s_F + 1)} > 0$. So we pick up the smaller root and have

$$
\hat{p}_{032}^C = p_{0B} = 1 - 2\sqrt{(-f + s_F - 1)l}
$$
. To evaluate \hat{p}_{032}^C , we first have $\frac{d\hat{p}_{032}^C}{df} = \frac{l}{\sqrt{-lf + ls_F - l}} > 0$ and

 $\hat{p}_{O11}^{C} = 0$ *C* $d\hat{p}^{\mathsf{c}}_{o}$ $\frac{\rho_{011}}{df}$ = 0. Then we solve $\hat{p}_{032}^C = \hat{p}_{011}^C$ $\hat{p}_{032}^c = \hat{p}_{011}^c$ and get $f = f_{F3}$ $f = \hat{f}_{F3} = s_F - 1 - \frac{1}{l}$. Hence, we have $\hat{p}_{011}^C < \hat{p}_{032}^C$ $\hat{p}_{011}^{C} < \hat{p}_{032}^{C}$. To summarize the case, we have:

• Case F3: $f_{F3} < f < f_{F2}$ $\hat{f}_{F3} < f < \hat{f}_{F}$ When $p_o \le \hat{p}_{o31}^c = \hat{p}_{o11}^c$, $p_F^* = \hat{p}_{F1}^c$ and the total profit is π_{LHC}^* . When $\hat{p}_{031}^C < p_0 \leq \hat{p}_{032}^C$, $p_F^* = \hat{p}_{F2}^C$ and the total profit is π_{FC}^* . When $p_o > \hat{p}_{o32}^c$, $p_F^* = \hat{p}_{F5}^c$ and the total profit is π_{L2FB}^* ;

When 3 $f < \hat{f}_{F3}$, we have $\hat{p}_{01}^C > \hat{p}_{032}^C$, so we need to compare π_{L1FC}^* and π_{L2FB}^* . We derive

 $\frac{1}{L_1 r_C} - \pi_{L2FB}^* = \frac{(f - s_F)l}{2} - \frac{p_O}{2} + \frac{l}{2}$ *F F* $\pi_{L1FC}^* - \pi_{L2FB}^* = \frac{(f - s_F)l}{2} - \frac{p_0}{2} + \frac{l}{2}$ and after solving $\pi_{L1FC}^* - \pi_{L2FB}^* = 0$, we have

 $\hat{p}_{041}^C = (f - s_F + 1)$ $p_o = \hat{p}_{o41}^c = (f - s_F + 1)l$. To summarize, we have:

• Case F4: $f \leq f_{F3}$ $f \leq \hat{f}_F$

> When $p_o \le \hat{p}_{o41}^c$, $p_F^* = \hat{p}_{F1}^c$ and the total profit is π_{LHC}^* . When $p_o > \hat{p}_{o41}^c$, $p_F^* = \hat{p}_{FS}^c$ and the total profit is π_{L2FB}^* .

Now let's derive e-retailer's best response functions p^* to the offline retailer's choice of offline price under each case.

- Case A: When $p_o > \hat{p}_{o1}^c$, we get $p_o > p_f + l$, the total profit function is $\pi_{OA} = p_O \cdot (a_{EA}^C + a_{SA}^C) - f \cdot a_{EA}^C = 0$. Hence, there is no best response function in this case.
- Case B: When $\hat{p}_{02}^C < p_0 \leq \hat{p}_{01}^C$, we get $p_F l < p_0 \leq p_F + l$, the total profit function is $(a_{EB}^C + a_{SB}^C) - f \cdot a_{EB}^C = p_0 \left(\frac{l}{4} + \frac{p_F}{4} - \frac{p_0}{4} \right) - f \left(\frac{l}{4} + \frac{p_F}{4} - \frac{p_0}{4} \right)$ $C_{OB} = p_O \cdot (a_{EB}^C + a_{SB}^C) - f \cdot a_{EB}^C = p_O \left[\frac{1}{\epsilon} + \frac{P_F}{\epsilon} - \frac{P_O}{\epsilon} \right] - f \left[\frac{1}{\epsilon} + \frac{P_F}{\epsilon} \right]$ $\pi_{OR} = p_o \cdot (a_{FR}^C + a_{SR}^C) - f \cdot a_{FR}^C = p_o \left(\frac{l}{I} + \frac{p_F}{I} - \frac{p_o}{I} \right) - f \left(\frac{l}{I} + \frac{p_F}{I} - \frac{p_o}{I} \right)$ $= p_o \cdot (a_{EB}^c + a_{SB}^c) - f \cdot a_{EB}^c = p_o \left(\frac{1}{4} + \frac{F}{4} - \frac{F o}{4} \right) - f \left(\frac{1}{4} + \frac{F}{4} - \frac{F o}{4} \right)$ and we derive the

second order derivative 2 2 $\frac{1}{\epsilon} < 0$ 2 *OB O d dp* $\frac{\pi_{OB}}{\sigma^2} = -\frac{1}{2} < 0$ Then we solve $\frac{d\pi_{OB}}{dr} = 0$ *O d dp* $\frac{\pi_{OB}}{\sigma} = 0$ and get

 $p_o^* = \hat{p}_{O2}^C = (p_F + f + l)/2$ and $\pi_{OB}^* = \frac{(-l - p_F + f)^2}{16}$ 16 *F OB* $\pi_{OB}^* = \frac{(-l - p_F + f)^2}{\pi}$. Note that we have the condition $p_F - l < p_O \leq p_F + l$, so we first evaluate the lower boundary $p_O - (p_F - l)$. When $p_o = (p_F + f + l)/2$, we get $p_o - (p_F - l) = \frac{3}{2}$ 2 2 2 $p_o - (p_F - l) = \frac{3l}{2} - \frac{p_F}{2} + \frac{f}{2}$. We derive negative derivative $d\left(\frac{3l}{2} - \frac{p_F}{2} + \frac{f}{2}\right)$ +

$$
\frac{d\left(\frac{\overline{z}}{2} - \frac{\overline{z}}{2} + \frac{\overline{z}}{2}\right)}{dp_F} = -\frac{1}{2}
$$
 and get $p_F = 3l + f$ when $\frac{3l}{2} - \frac{p_F}{2} + \frac{f}{2} = 0$. Hence, we need to have

 $p_F < 3l + f$. Then we evaluate the upper boundary $p_F + l - p_o$. When $p_o = (p_F + f + l)/2$,

we get
$$
p_F + l - p_O = \frac{l}{2} + \frac{p_F}{2} - \frac{f}{2}
$$
. We derive positive derivative $\frac{d\left(\frac{l}{2} + \frac{p_F}{2} - \frac{f}{2}\right)}{dp_F} = \frac{1}{2}$ and get

 $p_F = \hat{p}_{F11} = f - l$ when $\frac{1}{2} + \frac{p_F}{2} - \frac{J}{2} = 0$ 2 2 2 $\frac{l}{2} + \frac{p_F}{2} - \frac{f}{2} = 0$. Hence, we need to have $p_F > f - l$. Then, we check the compatibility and have $(3l + f) - (f - l) = 4l > 0$. So we need to satisfy the condition $f - l < p_F < 3l + f$ in this case. When $p_F < f - l$, solve the Lagrangian $\log P_{\rm O}\left(\frac{l}{4} + \frac{p_{\rm F}}{4} - \frac{p_{\rm O}}{4}\right) - f\left(\frac{l}{4} + \frac{p_{\rm F}}{4} - \frac{p_{\rm O}}{4}\right) + \lambda\left(p_{\rm F} - p_{\rm O} + l\right)$ $F_{L1OB} = P_{\text{O}} \left[\frac{P}{A} + \frac{PF}{A} - \frac{PO}{A} \right] - f \left[\frac{P}{A} + \frac{PF}{A} - \frac{PO}{A} \right] + \lambda \left(P_{F} \right)$ $\pi_{L10B} = p_{\rm o} \left(\frac{l}{f} + \frac{p_{F}}{f} - \frac{p_{\rm o}}{f} \right) - f \left(\frac{l}{f} + \frac{p_{F}}{f} - \frac{p_{\rm o}}{f} \right) + \lambda (p_{F} - p_{\rm o} + l)$ $(l p_F p_0)$ $(l p_F p_0)$ $= p_{\text{o}} \left(\frac{1}{4} + \frac{F_F}{4} - \frac{F_0}{4} \right) - f \left(\frac{1}{4} + \frac{F_F}{4} - \frac{F_0}{4} \right) + \lambda (p_F - p_{\text{o}} +$, we get the boundary solution $p_o^* = \hat{p}_{o1}^c = p_F^*$ *C* $p_o^* = \hat{p}_{o1}^c = p_f + l$ and $\pi_{L1OB}^* = 0$. When $p_f > 3l + f$, we get the boundary solution

$$
p_O^* = p_F - l
$$
 and $\pi_{L2OB}^* = -\frac{l(l - p_F + f)}{2}$.

• Case C: When $\hat{p}_{03}^C < p_0 \leq \hat{p}_{02}^C$, we get $p_F - 1 \leq p_0 < p_F - 1$, the total profit function is $\int_{0}^{C} (a_{EC}^{C} + a_{SC}^{C}) - f \cdot a_{EC}^{C} = \frac{p_{O}(p_{F} - p_{O})}{2} - \frac{lf}{2}$ *C C C C F*OL*P F OC* PO WEC $USCI$ J VEC $\pi_{OC} = p_{O} \cdot (a_{EC}^C + a_{SC}^C) - f \cdot a_{EC}^C = \frac{p_{O}(p_F - p_{O})}{2} - \frac{lf}{2}$ and we derive the second order derivative 2 $\frac{OC}{2} = -1 < 0$ *O d dp* $\frac{\pi_{OC}}{2}$ = -1 < 0 Then we solve $\frac{d\pi_{OC}}{2}$ = 0 *O d dp* $\frac{\pi_{OC}}{dp_a} = 0$ and get $p_o^* = \hat{p}_{oa}^C = \frac{p_a}{2}$ $\hat{p}_{O3}^C = \hat{p}_{O3}^C = \frac{P_F}{2}$ $p^*_{\scriptscriptstyle O} = \hat{p}^{\scriptscriptstyle C}_{\scriptscriptstyle O3} = \frac{p_{\scriptscriptstyle F}}{2}$ and 2 8 2 $\frac{F}{\rho C} = \frac{F}{c}$ $\pi_{OC}^* = \frac{p_F^2}{2} - \frac{lf}{2}$. Note that we have the condition $p_F - 1 \le p_O^* < p_F - l$, so we first evaluate the

lower boundary $p_o - (p_F - 1)$. When $p_o = \frac{p_I}{2}$ $\sigma = \frac{PF}{2}$ $p_o = \frac{p_F}{2}$, we get $p_o - (p_F - 1) = 1 - \frac{p_F}{2}$. We derive

negative derivative 1 1 2 2 *F* $d \mid 1 - \frac{PF}{F}$ *p p d* $\left(1-\frac{p_F}{2}\right)_{\equiv -}$ $\left(\frac{1-\overline{p}}{2}\right) = -\frac{1}{2}$ and get $p_F = \hat{p}_{F13} = 2$ when $1 - \frac{p_F}{2} = 0$ 2 $-\frac{p_F}{r}$ = 0. Hence we need

to have $p_F < 2$. Then we evaluate the upper boundary $p_F - l - p_o$. When $p_o = \frac{p_l}{2}$ $\sigma = \frac{P_F}{R}$ $p_o = \frac{p_F}{2}$, we get

2 $p_F - l - p_o = \frac{p_F}{2} - l$. We derive positive derivative $\frac{2}{2} = \frac{1}{2}$ 2 *F F* $d\left(\frac{p_F}{p}-l\right)$ *dp* $\left(\frac{p_F}{2} - l\right) = \frac{1}{2}$ and get $p_F = 2l$ when

0 2 $\frac{p_F}{2} - l = 0$. Hence, we need to have $p_F > 2l$. Then, we check the compatibility and have

 $2 - 2l > 0$ based on our assumption that $0 < l < \frac{1}{2}$ 3 $\lt l \lt \frac{1}{r}$. So we need to satisfy the condition $2l < p_F < 2$ in this case. When $p_F < 2l$, solve the Lagrangian $(p_F - p_0)$ $\frac{(0 (P_F - P_0))}{2} - \frac{y}{2} + \lambda (p_F - p_0 - l)$ $10 C$ α α μ V_F P_0 O 2 2 *F L CO F* $\pi_{Lloc} = \frac{p_o(p_f - p_o)}{2} - \frac{lf}{2} + \lambda(p_f - p_o - l)$, we get the boundary solution $p_o^* = p_f - l$ and $\frac{1}{L} = -\frac{l(l-p_F + f)}{2}$ $\pi_{\text{LIOC}}^* = -\frac{l(l - p_F + f)}{2}$ When $p_F > 2$, solve the Lagrangian $(p_F - p_0)$ $\frac{0 (P_F - P_0)}{2} - \frac{y}{2} + \lambda (1 + p_0 - p_F)$ 2 O $\frac{01}{-}$ $\frac{9}{-}$ + λ (1) 2 2 *F L OC F* $\pi_{1,20C} = \frac{p_{\rm o}(p_{\rm F} - p_{\rm o})}{2} - \frac{lf}{2} + \lambda(1 + p_{\rm o} - p_{\rm F})$, we get the boundary solution $\hat{p}_{04}^{C} = p_{F} - 1$ $p_o^* = \hat{p}_{O4}^C = p_F - 1$ and π_{L2}^* 1 $\frac{1}{L}2OC = -\frac{1}{2} + \frac{PF}{2} - \frac{9}{2}$ $\pi_{\text{LOOC}}^* = -\frac{1}{2} + \frac{p_F}{2} - \frac{if}{2}$.

• Case D: When
$$
p_o \le \hat{p}_{o3}^C
$$
, we get $p_o < p_F - 1$, the total profit function is
\n
$$
\pi_{FD} = p_o \cdot (a_{ED}^C + a_{SD}^C) - f \cdot a_{ED}^C = \frac{p_o}{2} - \frac{lf}{2}.
$$
\nWe derive positive derivative $\frac{d\pi_{FD}}{dp_o} = \frac{1}{2}$. Hence we

get the boundary solution $p_o^* = p_F - 1$ and π_{L1}^* $\frac{1}{L}$ ²
F $\frac{D}{2}$ $\frac{D}{2}$ $\frac{D}{2}$ $\frac{D}{2}$ $\pi_{110D}^{*} = -\frac{1}{2} + \frac{p_F}{2} - \frac{if}{2}$.

Next, we summarize the e-retailer's overall best response function by consolidating their best response from above. First, we notice that $\pi_{L20C}^* = \pi_{L10D}^*$, so case D is dominated. Therefore, we have the following:

• Case B: When $p_F < f - l$, the boundary solution is $p_O^* = \hat{p}_{O_1}^c = p_F$ *C* $p_o^* = \hat{p}_{o1}^c = p_F + l$ and the corresponding total profit is π^*_{L1OB} .

When $f-l < p_F < 3l+f$, the interior solution is $p_o^* = \hat{p}_{O2}^C = (p_F + f + l)/2$ and the corresponding total profit is π_{OB}^* .

When $p_F > 3l + f$, the boundary solution is $p_O^* = p_F - l$ and the corresponding total profit is π_{L2OB}^* ;

• Case C+D: When $p_F < 2l$, the boundary solution is $p_O^* = p_F - l$ and the corresponding total profit is π_{Lloc}^* .

When $2l < p_F < 2$, the interior solution is $p_o^* = \hat{p}_{O3}^C = p_F / 2$ and the corresponding total profit is π_{oc}^* .

When $p_F > 2$, the boundary solution is $p_O^* = \hat{p}_{O4}^C = p_F - 1$ $p_o^* = \hat{p}_{O4}^C = p_F - 1$ and the corresponding total profit is π_{L2OC}^* .

First, we notice that $\pi_{L2OB}^* = \pi_{L1OC}^*$. Then we compare the two boundaries $3l + f$ and 2*l*, and we have $3l + f - 2l = l + f > 0$ given $f > 0$. So we get $2l < 3l + f$. Then we need to discuss the position of the other two boundaries $f - l$ and 2. Since $f - l < 3l + f$, there are two possible positions for $f - l$, i.e., $f - l < 2l < 3l + f$ and $2l < f - l < 3l + f$. Therefore, we look at the two cases separately.

When $f - l < 2l$, i.e. $f < 3l$, we have $3l + f < 6l$. Since $0 < f < \frac{1}{2}$ 3 $f \leq \frac{1}{2}$, we get $3l + f \leq 2$. Then we

compare π_{OB}^* with π_{OC}^* , and we get $\pi_{OB}^* - \pi_{OC}^* = \frac{1}{16}f^2 + \frac{3}{8}lf - \frac{1}{8}p_Ff + \frac{1}{16}l^2 + \frac{1}{8}lp_F - \frac{1}{16}p_F^2$. We

derive the second order derivative $\frac{d^2 (\pi_{OB}^* - \pi_{OC}^*)}{d^2}$ 2 $_{-}^{1}<$ 0 8 $d^{\textit{2}}$ ($\pi^*_{\textit{OB}}$ – $\pi^*_{\textit{OC}}$ *F dp* $\left(\frac{\pi_{OB}^* - \pi_{OC}^*}{\pi_{BO}^2}\right) = -\frac{1}{2} < 0$. Then when $p_F = 2l$, we get

 $\frac{(l+f)^2}{2} > 0$ $\frac{\partial B}{\partial C}$ $\frac{\partial C}{\partial C}$ 16 $\pi_{OB}^* - \pi_{OC}^* = \frac{(l+f)^2}{1+f} > 0$. When $p_F = 3l + f$, we get $\frac{(l+f)^2}{2}$ < 0 $\frac{\partial B}{\partial C}$ **8** $\pi_{OB}^* - \pi_{OC}^* = -\frac{(l+f)^2}{2} < 0$. Therefore, we derive two roots $p_{FA} = \sqrt{2f} + \sqrt{2l} - f + l$ and $p_{FB} = -\sqrt{2f} - \sqrt{2l} - f + l$ by solving $\pi_{OB}^* - \pi_{OC}^* = 0$ and we keep the larger root. We have $p_{FA} - p_{FB} = 2\sqrt{2}(l+f) > 0$, so we keep $\hat{p}_{F12} = p_{FA} = \sqrt{2(f+l) - f + l}$. Therefore, to summarize, we have:

• Case B+C+D: $f < 3l$

When $p_F \leq f - l$, the boundary solution is $p_O^* = \hat{p}_{O_1}^c = p_F$ *C* $p_o^* = \hat{p}_{o1}^c = p_F + l$ and the corresponding total profit is $\pi^*_{\scriptscriptstyle L1OB}$.

When $f-l < p_F < \hat{p}_{F12}$, the interior solution is $p_O^* = \hat{p}_{O2}^C = (p_F + f + l)/2$ and the corresponding total profit is π_{OB}^* .

When $\hat{p}_{F12} < p_F < 2$, the interior solution is $p_O^* = \hat{p}_{O3}^C = p_F / 2$ and the corresponding total profit is π_{oc}^* .

When $p_F > 2$, the boundary solution is $p_O^* = \hat{p}_{O4}^C = p_F - 1$ $p_o^* = \hat{p}_{o4}^C = p_F - 1$ and the corresponding total profit is $\pi_{\scriptscriptstyle{L2OC}}^*$.